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Abstract – The statement and solution algorithm of a two-dimensional thermal conductivity inverse problem on 
complex identification of thermophysical properties of anisotropic complex material is presented. An 
experimental facility for carrying out thermophysical research has been worked out. The problem of optimal 
designing of temperature measurements has been solved in the course of the experiment. Data on the complex of 
thermophysical properties of the composite material have been obtained. 
 
1. INTRODUCTION 
Extended use of composite materials (glass, carbon and organic fiber-based composites) in rocket, aviation, 
automobile and other equipment demands detailed research of their characteristics. One of the most difficult 
problems is the problem of obtaining reliable data on the thermophysical properties of composite materials. The 
point is that by nature composite materials possess a pronounced anisotropy of properties and in addition, their 
properties depend upon the type of a semi-finished item of which the specimen is produced. The latter 
circumstance complicates the use of the hot guard plate method which is frequently used in thermophysical 
research, as very often one fails to produce a specimen with the required orientation and ratio of width and 
thickness of a concrete semi-finished item, e.g. a plate. 
 In this connection the use of complex identification methods of thermophysical properties of composite 
materials based on solving two-dimensional thermal conductivity inverse problems can be regarded as 
perspective. In this case the totality of the thermophysical properties of the material (volumetric heat capacity 

 and thermal conductivity in two directions  and ) is determined from the data of one 
experiment. 
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2. EXPERIMENTAL FACILITY 
At the Moscow Aviation Institute there has been developed an experimental module for carrying out 
thermophysical research on composite materials in the temperature range from 0 to 150 0С. In this temperature 
range no irreversible physicochemical changes take place in composite materials, i.e. the material can be 
regarded as thermostable. One should mention that the idea of the experimental scheme and the statement of the 
two-dimensional thermal conductivity coefficient inverse problem for the scheme are presented in [1]. 
 The specimen for experimental research is gathered from 4 plates, sized 64×64 mm and 6 mm thick each, 
which are cut out of a plate blank. In order to prevent contact resistance between the plates their surface is 
covered with highly thermal conductive lubrication. The completed specimen is placed between two aluminium 
radiators that are cooled with flowing water. Two other sides of the specimen are pressed to massive aluminium 
plates which are in thermal contact with radiators and two last sides of the specimen are covered by heat 
insulation layers, see Figure 1. 

In order to provide a good thermal contact of the specimen with the radiators and aluminium plates the 
highly thermal conductive lubrication is used. Experimental module of this kind permits a stable temperature 
close to the two-dimensional one in the central section of the specimen and provides a stable temperature on the 
border of the specimen. 
 Before the start of the experiment the specimen is kept in the experimental module with water switched on 
through the radiators for about 2 hours. It contributes to temperature evenness in the specimen. 
 The heating source in the process of the experiment is an electrical heater made of Nichrome alloy, 
0.5 mm in diameter located in the mechanical center of the specimen. The capacity of the heater during the 
experiment is changed according to predetermined dependence. 
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Figure1. Scheme 
of the 
experimental 
module 
1-specimen;  
2-water-cooled 
radiators; 
3-aluminium 
plates; 4-heat 
insulation layings;  
5 -heater. 
 
 
 
 
 
 
 

 
3. MATHEMATICAL MODEL OF HEAT TRANSFER PROCESS 
The mathematical model of two-dimensional unsteady heat transfer in the experimental module can be presented 
as follows: 

( , , ) ( , , ) ( , , )( ) ( ) ( ) ( , , ),x y
T x y T x y T x yC T T T S x y

x x y y
τ τ τλ λ

τ
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where:  the temperature; ,  the coordinates;  the time;  the volumetric heat capacity of the 
material;  and  the thermal conductivity of the material in X and Y directions and  
the centred heat source.  

T x y τ ( )C T
( )x Tλ ( )y Tλ ( , , )S x yτ

 The temperature field of the specimen initially is constant, i.e. 
0( , ,0)T x y T= .  (2) 

 In the course of the test the temperature of its boundaries does not change, i.e. 
0( , , )T x y Tτ = , at  and 0x = xx = ∆ , and at and   (3) 0y = yy = ∆

 Heating of the specimen is performed with the help of a centred heating source located at the point with 
coordinates sx  and sy . The power of the heating source changes through time in a predetermined way, namely: 

( , , ) ( ) ( ) ( )s sS x y x x y y Qτ δ δ τ= − ⋅ − ⋅ , (4) 
where  is the linear specific power of the electric heater. ( )Q τ
 In the course of the test temperature values are measured at a number of points of the specimen. One 
should determine the temperature dependences of the volumetric heat capacity  and the thermal 
conductivity  and  from these changes, i.e. solve a two-dimensional thermal conductivity inverse 
problem. 
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4. TWO-DIMENSIONAL THERMAL CONDUCTIVITY INVERSE PROBLEM 
In order to solve the inverse problem for determining thermophysical properties we use an extreme statement [2], 
in which the temperature dependent anisotropic material thermal conductivity and the temperature dependent  
volumetric heat capacity, which give the minimum to the quadratic discrepancy functional of the experimental 
and calculated temperature values with respect to the discrepancy principle requirements, are defined as follows: 
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2( ) min;S u S= ≥ , 

where  is the duration of the experiment,  is the number of temperature sensors;  is the temperature 
measurement error; T are the experimental temperature values; and  and  are the locations of the 
temperature sensors. 
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The required temperature dependent thermal properties are represented in the following parametric way:  
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where 1kϕ , 2kϕ and 3kϕ are the basic functions; , ,x y CK K Kλ λ  are the number of parameters used to represent the  

unknown temperature dependent  thermophysical properties . ( ) ( ) ( ), ,x yT T Cλ λ T

n

n

 The inverse solution is based on an iterative regularization method in which the termination of the 
iterative process is performed according to the discrepancy principle. The problem of functional minimization 
(5) is solved by the method of conjugate gradients. The iterative minimization process can be presented as 
follows: 
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where the superscript n  denotes the iteration number. 
 The gradient of the residual functional  is defined according to the parameters of the sought 
parameters based  on  the adjoint problem solution. The adjoint problem is as follows: 
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The gradient of the functional is found as follows: 
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The iteration step is determined from the following expression: 
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The sensitivity functions  are determined by solving the following problem: ( , , )v x y τ
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0x =  and xx = ∆ ;  and             (21) 
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5. RESULTS OF MATHEMATICAL MODELLING 
The accuracy and the stability of the inverse problem solution were investigated by the method of computational 
modeling. At the first stage there were calculated temperature values in the presupposed location of the sensors 
and at the second stage these “experimental” temperatures were used for solving the inverse problem. 
 In Figure 2 there are presented the results of the two-dimensional inverse problem of determining 
the thermophysical properties of composite material for different numbers (1, 2, 4) of linear approximation of the 
sought temperature dependences. It is obvious that with a growing number of approximation intervals, the 
solution accuracy is reduced and the solution becomes oscillatory.  

 
 
Figure 2. Solution of a 
two-dimensional inverse 
problem for various 
numbers of approximation 
regions of the temperature 
dependences for 
the thermophysical 
properties. 
1, 2, 9 - , , 

 - of the model 
material;  
3, 4, 10 – solution results 
for 1 interval; 
5, 6, 11 – solution results 
for 2 intervals; 
7, 8, 12 – solution results 
for 3 intervals. 
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  Figure 3 illustrates the inverse problem solution for 5% “noisy” data introduced in the input temperature 
data. It is clear that more considerable solution errors, just like in the previous case, are observed by the use of a 
greater number of linear approximation intervals. 
 

 
Figure 3. Solution of a 
two-dimensional inverse 
problem for various 
numbers of approximation 
regions of temperature 
dependences for the 
thermophysical properties. 
Case of noisy data. 
1, 2, 7 - , , 

 - of model material; 
3, 4, 8 –  solution results 
for 1 interval; 
5, 6, 9 – solution results 
for 2 intervals. 
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6. STATEMENT OF THE TEMPERATURE MEASUREMENT DESIGN PROBLEM 
While organizing thermophysical research, the choice of rational temperature sensors location is an important 
question. The general approach to the problem of temperature measurement design while determining thermal 
conductivity is given in [2, 3]. In the present research this approach is used for the optimal design of temperature 
measurements while solving the two-dimensional thermal conductivity coefficient inverse problem.  
 Under the measurement design , we understand the totality 

of  number and location of temperature sensors which contribute to the best accuracy of inverse problem 
solution. For the quality measure of the measurement design we take the determinant of the normalized Fisher 
matrix 

1 1 2 2 3 3{ , ( , ), ( , ), ( , ) ...( , )}
t tt NN x у x у x у x уΛ = N

tN

F . Elements of Fisher matrix are determined as follows: 
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where 
x y CK K K Kλ λ= + +  and Φ =  Values of  are sensitivity 

functions of the temperature field at the point of the temperature sensor location. The sensitivity functions are 
determined from the solution of the following boundary-value problem: 
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presented in Figure 4 result 2. 

igure 4. Solution of the 
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 In order to find the Fisher matrix determinant, the famous non-gradient Nelder-Mead method is used. 
 
7. SOLUTION OF THE MEASUREMENT DESIGN PROBLEM  
For the conditions that occur in the experimental module, see Figure 1, a problem of designing temperature 
measurements was solved. If one does not place restrictions on the location of temperature sensors then the 
measurement plan in Figure 4 result 1 is the optimal one. However, the location of a temperature sensor at the 
position where the heater is located or close to it (at a distance of less than 1 mm) is impossible. In addition the 
specimen is constructed from separate plates 6 mm thick each and damaging the plates for the installation of the 
temperature sensors is undesirable. That is why one should reduce the permissible measurement design by 
demanding that temperature sensors are located on the boundaries of the plates and at a distance not less than 1 
mm from the heater. Coordinates of temperature sensors at optimal designing with these restrictions are also 

 

0

6

12

18

24

0 8 16 24 32 40 48 56 64

X, mm

Y, mm

1 2

F
problem of temperature 
measurements optimal 
designing without any 
restrictions (1) and with
restricted temperature 
sensors location (2). 
 
 

A04
5



8. EXPERIMENTAL RESEARCH AND DATA PROCESSING 
Experimental research was carried out at Moscow Aviation Institute by engineers Klimenko and Razuvanov. As 
temperature sensors there were used thermocouples with thermoelectrodes 0.2 mm in diameter located according 
to the measurement design, see Figure 4. Thermocouples and the heater were laid into special riffles one after 
another, then they were stretched and fixed to the plates with the help of special adhesive. Thermoelectrodes of 
the thermocouples and the heater were insulated from the material of the specimen by special covering. Figure 5 
illustrates the dependence of specific power changes of the electrical heater in time and the indications of the 
thermocouples. 

Figure 6. 

 
Figure 5. Indications of 
temperature sensors, 
installed at the following 
points 
1- =34 mm; =12mm, 
2- =36 mm; =12 mm, 

x y
x y

3- =42 mm; =12 mm x y
and dependence of the 
heater specific power 
during the experiment (4). 
 
 
 
 
 
 
 

 
Obtained experimental data were used as input data while solving a two-dimensional inverse problem. For the 
numerical solution of the inverse problem a finite-element fragmentation of the calculation area with a step of 
1.0 mm was used. The step in time was taken to be 5 seconds. The nonlinear direct problem was solved 
iteratively, using Newton’s iteration, with an accuracy of 0.01 degree. For solving the two-dimensional inverse 
problem the conjugate gradient method with a vector choice of step was used. To guarantee uniqueness of the 
solution a series of computations for different choices of initial approximation was performed. The initial 
approximation of the volumetric heat capacity varied in the range of 1000000-2500000 J/m3K while the initial 
approximation of the thermal conductivity was 0.5-2.5 W/mK. The iterative process terminated on the condition 
of coincidence of the results of two consequent iterations with accuracy of 0.5%. Solutions of the two-
dimensional inverse problem of identifying thermophysical properties of the composite material are presented in 
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Figure 6. Solution of a 
two-dimensional inverse 
problem of determining 
the thermophysical 
properties of a composite 
material. 
1 - ; 2 - ; 
3 -  
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9. ANALYSIS OF RESULTS 
In order to control the solution of the two-dimensional inverse problem a comparison was performed between 
calculated values of temperature obtained with the use of temperature dependences of thermophysical properties 
of the material under consideration, determined from the inverse problem solution with experimental 
temperature values. In Figure 7 time dependences of difference between calculated and experimental 
temperature values are presented. One can notice that the maximal difference of calculated and experimental 
temperature values is not more than 2.7 K. It confirms the reliability of results obtained on finding 
thermophysical properties of the material. 
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10. CONCLUSIONS 
A solution algorithm of the two-dimensional thermal conductivity inverse problem for the determination of the  
thermophysical properties of anisotropic composite material has been worked out. An experimental module for 
carrying out thermophysical research has been created. Designing temperature measurements has been executed 
and regimes for carrying out experimental research have been chosen. A series of experiments has been 
undertaken and the thermophysical properties of composite material have been determined. 
 
REFERENCES 

1. R. Abou Khachfe, J.L. Bailleul and Y. Jarny, The simultaneous determination of the thermal conductivity 
and heat capacity within an orthotropic medium by using conjugate gradient algorithm, 16th IMACS 
Congress, Lausanne, Switzerland, 2000. 

2. O.M. Alifanov, Inverse Heat Transfer Problems, Springer-Verlag, Berlin Heidelberg, 1994. 

3. O.M.Alifanov, E.A. Artyukhin and S.V.Rumyantsev, Extreme Methods for Solving Ill-Posed Problems 
with Application to Inverse Heat Problems, Begell House Inc., New-York, 1995. 

A04
7


